NTRU Cryptosystems Technical Report

Report # 014, Version 1
Title: Almost Inverses and Fast NTRU Key Creation
Author: Joseph H. Silverman
Release Date: March 15, 1999

Abstract. We explain how to use the "Almost Inverse Algorithm" of Schroeppel, Orman, O’Malley, and Spatscheck [1] to efficiently compute NTRU public/private key pairs.

Let \(m(X) \) be a polynomial in \((\mathbb{Z}/2\mathbb{Z})[X]\). The "Almost Inverse Algorithm" of Schroeppel, Orman, O’Malley, and Spatscheck [1] gives an efficient way to compute the inverse of the polynomial \(a(X) \) in the ring \((\mathbb{Z}/2\mathbb{Z})[X]/(m(X))\) provided that \(\gcd(a(X), m(X)) = 1 \) and \(m(0) = 1 \). Here is how the almost inverse algorithm works for the polynomial \(m(X) = X^N - 1 \) used by the NTRU Public Key Cryptosystem.

Inversion in \((\mathbb{Z}/2\mathbb{Z})[X]/(X^N - 1)\)

Input: \(a(X) \)

Output: \(b(X) \equiv a(X)^{-1} \) in \((\mathbb{Z}/2\mathbb{Z})[X]/(X^N - 1)\)

Step 1: Initialization: \(k := 0 \), \(b(X) := 1 \), \(c(X) := 0 \), \(f(X) := a(X) \), \(g(X) := X^N - 1 \)

Step 2: Loop:

Step 3: do while \(f_0 = 0 \)

Step 4: \(f(X) := f(X)/X \), \(c(X) := c(X) \times X \), \(k := k + 1 \)

Step 5: if \(f(X) = 1 \) then return \(X^{N-k}b(X) \ (\text{mod } X^N - 1) \)

Step 6: if \(\deg(f) < \deg(g) \) then

Step 7: exchange \(f \) and \(g \) and exchange \(b \) and \(c \)

Step 8: \(f(X) := f(X) + g(X) \ (\text{mod } 2) \)

Step 9: \(b(X) := b(X) + c(X) \ (\text{mod } 2) \)

Step 10: goto Loop

Note that the number \(f_0 \) in Step 3 is the constant coefficient of \(f \), and that the return value \(X^{N-k}b(X) \ (\text{mod } X^N - 1) \) in Step 4 is simply \(b(X) \) with its coefficients cyclically shifted \(k \) places. We also note that the speed of the Inversion Procedure can be significantly enhanced by a number of implementation tricks, such as expanding the operations on \(b, c, f, g \) into inline loop-unrolled code. We refer the reader to [1] for a list of practical suggestions.
In order to create NTRU public/private key pairs, one needs to compute the inverse of a polynomial modulo p for primes other than 2. Here is an adaptation of the almost inverse algorithm for the prime $p = 3$, since this is the other value required for the standard NTRU parameter sets. (At the end of this note we will give a version for arbitrary primes.)

Inversion in $(\mathbb{Z}/3\mathbb{Z})[X]/(X^N - 1)$

Input: $a(X)$
Output: $b(X) \equiv a(X)^{-1}$ in $(\mathbb{Z}/3\mathbb{Z})[X]/(X^N - 1)$
Step 1: Initialization: $k := 0$, $b(X) := 1$, $c(X) := 0$
Step 2: Loop:
Step 3: do while $f_0 = 0$
Step 4: $f(X) := f(X)/X$, $c(X) := c(X) \cdot X$, $k := k + 1$
Step 5: if $f(X) = \pm 1$ then return $\pm X^{N-k}b(X) \pmod{X^N - 1}$
Step 6: if $\deg(f) < \deg(g)$ then
Step 7: exchange f and g and exchange b and c
Step 8: if $f_0 = g_0$
Step 9: $f(X) := f(X) - g(X) \pmod{3}$
Step 10: $b(X) := b(X) - c(X) \pmod{3}$
Step 11: else
Step 12: $f(X) := f(X) + g(X) \pmod{3}$
Step 13: $b(X) := b(X) + c(X) \pmod{3}$
Step 14: goto Loop

In this routine, all computations are done modulo 3, so all coefficients are chosen from the set $\{-1, 0, 1\}$. Also, the two ± 1's in Step 5 are chosen to have the same sign.

The creation of NTRU public/private key pairs often requires finding the inverse of a polynomial $f(X)$ modulo not only a prime, but also a prime power, in particular a power of 2. However, once an inverse is determined modulo a prime p, a simple method based on Newton iteration allows one to rapidly compute the inverse modulo powers p^r. The following algorithm converges doubly exponentially, in the sense that it requires only about $\log_2(r)$ steps to find the inverse of $a(X)$ modulo p^r, once one knows an inverse modulo p.

Inversion in $(\mathbb{Z}/p^r\mathbb{Z})[X]/(X^N - 1)$

Input: $a(X)$, p (a prime), r
$b(X) \equiv a(X)^{-1}$ (mod p)
Output: $b(X) \equiv a(X)^{-1}$ (mod p^r)
Step 1: $q = p$
Step 2: do while $q < p^r$
Step 3: $q = q^2$
Step 4: $b(X) := b(X)(2 - a(X)b(X)) \pmod{q}$
Finally, in the interest of completeness, we give a version of the almost inverse algorithm for an arbitrary prime p.

Inversion in $(\mathbb{Z}/p\mathbb{Z})[X]/(X^N - 1)$

Input: $a(X)$, p (a prime)

Output: $b(X) \equiv a(X)^{-1}$ in $(\mathbb{Z}/p\mathbb{Z})[X]/(X^N - 1)$

Step 1: Initialization: $k := 0$, $b(X) := 1$, $c(X) := 0$,
$$f(X) := a(X), \ g(X) := X^N - 1$$

Step 2: Loop:

Step 3: do while $f_0 = 0$

Step 4: $f(X) := f(X)/X$, $c(X) := c(X) \times X$, $k := k + 1$

Step 5: if $\deg(f) = 0$ then

Step 6: $b(X) := f_0^{-1}b(X)$ (mod p)

Step 7: return $X^{N-k}b(X)$ (mod $X^N - 1$)

Step 8: if $\deg(f) < \deg(g)$ then

Step 9: exchange f and g and exchange b and c

Step 10: $u := f_0g_0^{-1}$ (mod p)

Step 11: $f(X) := f(X) - u \times g(X)$ (mod p)

Step 12: $b(X) := b(X) - u \times c(X)$ (mod p)

Step 13: goto Loop

Why It Works

Since no explanation is given in [1], we briefly explain why the "almost inverse algorithm" works. The idea is that one starts with the vector $(f, g) = (a, m)$. One then multiplies (on the right) by the following matrices:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} X^{-1} & 0 \\ 0 & 1 \end{pmatrix}, \quad C_u = \begin{pmatrix} 1 & 0 \\ -u & 1 \end{pmatrix}.$$

Note that the effect of these transformations is

$$(f, g)A = (g, f), \quad (f, g)B = (X^{-1}f, g), \quad (f, g)C_u = (f - ug, g).$$

So Step 4 is the matrix B, Step 9 is the matrix A, and Step 11 is the matrix C_u. Note that in Step 11, the value of u is chosen so that $f - ug$ is divisible by X (i.e., so that its constant term is 0). Then in Step 4 we divide f by X until its constant term is non-zero. Also, in Step 9 we make sure that $\deg(f) \geq \deg(g)$. The net effect is that each time through the loop the total degree $\deg(f) + \deg(g)$ is reduced by at least 1, so eventually f becomes a constant (provided $\gcd(f, g) = 1$). Hence the algorithm terminates in at most $\deg(a) + \deg(m)$ iterations.

Thus the algorithm produces a sequence of transformations D_1, D_2, \ldots, D_r, where each D_i is one of $A, B,$ or C_u, so that

$$(a, m)D_1D_2D_3 \cdots D_{r-1}D_r = (\alpha, \ast).$$

March 15, 1999
where \(\alpha \) is a non-zero number modulo \(p \). Unfortunately, the coefficients of the product \(D_1 D_2 \cdots D_r \) are not polynomials, because the matrix \(B \) has \(X^{-1} \) as an entry. Let \(k \) be the number of times that \(B \) appears in the product \(D_1 D_2 \cdots D_r \). (It is easily seen that this is the value of \(k \) being computed by the algorithm.) Then \(X^k D_1 D_2 \cdots D_r \) has coefficients that are polynomials, say
\[
X^k D_1 D_2 \cdots D_r = \begin{pmatrix} a' \\ m' \\ \ast \end{pmatrix}.
\]
Now multiplying on the left by \((a, m) \) yields
\[
(aa' + mm', \ast) = (a, m) \begin{pmatrix} a' \\ m' \\ \ast \end{pmatrix} = (a, m) X^k D_1 D_2 \cdots D_r = X^k (\alpha, \ast),
\]
so we have
\[
aa' \equiv \alpha X^k \pmod{m}.
\]
The question now is how does the almost inverse algorithm construct this value \(a' \)? The answer is that while it is applying the transformations \(D_1, D_2, \ldots, D_r \) starting from \((a, m) \), it is applying the same transformations starting from \((b, c) = (1, 0) \), except that in place of \(B = \begin{pmatrix} X^{-1} & 0 \\ 0 & 1 \end{pmatrix} \), it instead applies \(XB = \begin{pmatrix} 1 & 0 \\ 0 & X \end{pmatrix} \). Since \(B \) has been used \(k \) times, at the end of the algorithm the value of \((b, c) \) is
\[
(b, c) = (1, 0) X^k D_1 D_2 \cdots D_r = (1, 0) \begin{pmatrix} a' \\ m' \\ \ast \end{pmatrix} = (a', \ast).
\]
In other words, at the end of the algorithm, \(b \) has a value satisfying
\[
ab \equiv \alpha X^k \pmod{m}.
\]
Since the value of \(\alpha \) is simply \(f_0 \) (the constant term of \(f \), which actually equals \(f \) at this stage of the algorithm), we see that \(a^{-1} = f_0^{-1} X^{N-k} b \). (Note \(X^{-k} \) is equal to \(X^{N-k} \), since we are working modulo \(X^N - 1 \).)

References

March 15, 1999
Comments and questions concerning this technical report should be addressed to
techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU Public
Key Cryptosystem are available at

www.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.
The NTRU Public Key Cryptosystem is patent pending.
The contents of this technical report are copyright March 15, 1999 by NTRU Cryptosystems, Inc.